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Rigorous coupled spin-charge drift-diffusion equations are derived from quantum-kinetic equations for the
spin-density matrix that incorporate effects due to k-linear spin-orbit interaction, an electric field, and the
elastic scattering on nonmagnetic impurities. The explicit analytical solution for the induced magnetization
exhibits a pole structure, from which the dispersion relations of spin excitations are identified. Applications of
the general approach refer to the excitation of long-lived field-induced spin waves by optically generated spin
and charge patterns for a planar and cylindrical geometry. This approach transfers methods known in the
physics of space-charge waves to the treatment of long-lived spin eigenmodes that appear in planar and
nonplanar two-dimensional electron systems with spin-orbit interaction. In addition, the amplification of an
oscillating electric field by spin injection is demonstrated.
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I. INTRODUCTION

Recent attention has focused on semiconductor spintron-
ics, in which electronic spin polarization is used for informa-
tion processing. Especially, the generation and manipulation
of nonequilibrium spin densities by exclusively electrical
means in nonmagnetic semiconductors is particularly attrac-
tive. Progress toward the development of spintronic devices
depends on theoretical and experimental studies of effects
due to the spin-orbit interaction �SOI�. This spin-dependent
coupling gives rise to an internal effective magnetic field that
leads to spin precession and reorientation. For semiconductor
quantum wells or heterostructures, the bulk and structural
inversion asymmetry result in Dresselhaus and Rashba SOI
terms, respectively. Unfortunately, the very same SOI also
causes spin relaxation. The randomization of electron spins
is due to the fact that the SOI depends on the in-plane mo-
mentum k. Consequently, the precession frequencies differ
for spins with different wave vectors. This so-called inhomo-
geneous broadening in conjunction with any elastic and in-
elastic scattering causes spin dephasing.1 The details of
which depend on the character of dominating scattering pro-
cesses, the band structure, and the crystal orientation.2 In
GaAs /AlxGa1−xAs quantum wells grown along the �001� axis
and with balanced Rashba and Dresselhaus SOI strengths, a
strong anisotropy in the in-plane spin dephasing time has
been measured.3–5 The spin relaxation along the �110� direc-
tion is efficiently suppressed. Based on this effect, which is
robust due to an exact spin rotation symmetry of the spin-
orbit Hamiltonian,6 a nonballistic spin-field-effect transistor
was proposed.7 From a theoretical point of view, it is pre-
dicted that for an idealized model with k-linear SOI the spin
polarization along �110� is conserved for a certain wave
vector.6 The experimental confirmation of this prediction8

was possible by exploiting transient spin-grating techniques.
This experimental method offers an efficient tool for identi-
fying coupled spin-charge eigenstates in the two-dimensional
electron gas �2DEG�. Optically induced diffraction patterns
are formed in semiconductors when two pulses with identical

energies interfere on the sample and excite electron-hole
pairs.9–12 By varying the relative angle between the two
pump beams, the grating period can be tuned for resonant
excitation of the eigenmodes. With a third time-delayed
pulse that diffracts from the photoinjected spin or charge
pattern, the time evolution of the spin polarization can be
monitored. A free-carrier concentration grating is produced
within the sample by two beams with parallel linear polar-
ization. Alternatively, an oscillating spin polarization, which
levitates over a homogeneous carrier ensemble, is generated
by cross linearly polarized pump pulses. By detuning the
frequencies, a moving �oscillating� charge and/or spin pattern
can be produced.

Most interesting both for basic research and the applica-
tion point of view are weakly damped spin-charge coupled
eigenmodes of the semiconductor heterostructure. These ex-
citations drastically change their character when an electric
field acts simultaneously on spin and charge carriers. Similar
to the traditional study of space-charge waves in crystals
�see, for instance, Ref. 13�, the field-dependent spin modes
can be identified and excited by an experimental setup that
provides the appropriate wave vector. Such an approach can
profit from methods developed in the well-studied field of
space-charge waves in crystals.

The reservoir of interesting spin phenomena is not ex-
hausted by the treatment of a planar 2DEG with SOI. A
diversity of new spin effects arises for different geometries
of the 2DEG. In dependence on the curvature of the surface,
in which the 2DEG resides, additional contributions to the
SOI appear that may lead to new characteristic features. Ex-
amples of current interest provide microtubes fabricated by
exploiting the self-rolling mechanism of strained bilayers.
These rolled-up structures exhibit pronounced optical
resonances14 arising from micron-sized cylindrical resona-
tors or give rise to novel magnetoresistance oscillations,
which were observed in the ballistic transport of electrons on
cylindrical surfaces.15 For nonballistic spintronic device ap-
plications, the prediction of a conserved spin component,
which arises when the Rashba coupling constant � equals the
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quantity �2 /2m�R �with R being the radius of the cylinder
and m� the effective mass of the 2DEG� is the most
interesting.16 The identification of this novel long-lived spin
mode by fabricated curved samples seems to be feasible with
the present-day technology.17–20

It is the aim of this paper to systematically derive general
spin-charge coupled drift-diffusion equations for a semicon-
ductor heterostructures with a general k-linear SOI that refer
both to the planar and cylindrical geometries. Based on the
rigorous analytical solution of these equations, a number of
electric-field-driven long-lived spin resonances are studied.

II. DERIVATION AND SOLUTION OF DRIFT-DIFFUSION
EQUATIONS

In this section, we introduce the model, derive quantum-
kinetic equations for the spin-density matrix, and solve re-
lated spin-charge coupled drift-diffusion equations for
conduction-band electrons, which reside in an asymmetric
semiconductor quantum well or in a heterostructure on a
cylindrical surface. Coupled spin and charge excitations are
treated by an effective-mass Hamiltonian, which includes
both SOI and short-range spin-independent elastic scattering
on impurities. We focus on spin effects exerted by an electric
field E. The single-particle model Hamiltonian for both the
planar and cylindrical 2DEG has the form

H0 = �
k,s

aks
† ��k − �F�aks + �

k,s,s�

���k� · �ss��aks
† aks�

− ieE��
k,s

��ak−��/2�s
† ak+��/2�s��=0 + u�

k,k�
�

s

aks
† ak�s,

�1�

where the carrier creation �aks
† � and annihilation �aks� opera-

tors depend on the spin index s and the wave vector k
= �kx ,ky ,0� �k= �k� ,kz ,0�� of the planar �cylindrical� 2DEG.
kz denotes the wave vector component along the cylinder
axis and k�= �m+1 /2� /R, with m being an integer. In Eq. �1�,
�k, �F, and � denote the energy of free electrons, the Fermi
energy, and the vector of Pauli matrices, respectively. In the
Born approximation, the elastic-scattering time � is ex-
pressed by the strength u of elastic scattering according to
the equation

1

�
=

2�u2

�
�
k�

�„��k� − ��k��… . �2�

All information about SOI is absorbed into the definition of
the vector ��k�. The components of which have their spe-
cific form for the planar and cylindrical geometry. We restrict
the treatment to linear-in-k Rashba and Dresselhaus SOI con-
tributions that result from the inversion asymmetry of the
quantum-well confining potential and the lack of bulk inver-
sion symmetry.

First, let us describe the situation for a planar 2DEG. At
the presence of both Rashba and Dresselhaus SOI terms, the
electric-field-induced spin polarization depends both on the
orientation of the in-plane electric field21,22 and on the spin-
injection direction.23 In order to account for these dependen-

cies, we consider the general class of k-linear SOI expressed
by �i�k�=�ijkj, where �ij are spin-orbit coupling
constants.24 The most studied example is a semiconductor
quantum well grown along the �001� direction. Assuming
that the Cartesian coordinate axes are oriented along the
principal crystallographic directions, we have for the com-
bined Rashba-Dresselhaus model �11=	, �12=�, �21=−�,
and �22=−	, with � and 	 being the Rashba and Dressel-
haus coupling constants, respectively. A change in the spin-
injection direction is achieved by the transformation ��
=U��U−1k�, with U being a rotation matrix.23 A configura-
tion of particular interest is obtained after a rotation around
the angle � /4, which leads to the SOI couplings: �11=0,
�12=�−	, �22=0, and �21=−��+	�.

All information about electric-field effects in the spin-
charge coupled electron ensemble is contained in the spin-
density matrix

fs�
s �k,k��t� = �aks

† ak�s��t, �3�

which is calculated from quantum-kinetic equations.25–28 Re-

sults are derived for the physical components f =Tr f̂ and f
=Tr�� f̂� of the spin-density matrix28 in the k ,� representa-
tion, where k→k+� /2 and k�→k−� /2.

Next, let us specify our model for SOI on a cylindrical
surface. The states of the second-quantized Hamiltonian for a
2DEG on a cylinder depend on the momentum kz along the
cylinder axis, the spin s, and the angle � around the
periphery.29–32 Accounting for the periodic boundary condi-
tion by a discrete Fourier transformation

akz↑��� = �
m=−





eim�akzm↑, akz↓��� = ei� �
m=−





eim�akzm↓,

�4�

the Hamiltonian can be cast into a form given by Eq. �1� with
the parabolic dispersion relation

��k� =
�2k2

2m�
−

1

2R
	� −

�2

4m�R

 �5�

and the vector ��k� characterizing the SOI on a cylinder

��k� = �0,− ��kz − 	k��,k�	� −
�2

2m�R

 − 	kz�

 �0,�y,�z� . �6�

The effects of an electric field on the spin polarization on a
cylinder surface are most suitably studied by projecting the
spin vector on a local trihedron. This transformation is
achieved by

f = �
s,s�

fs�
s Sss�, �7�

where the matrices
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S� =
1

2
	 0 ie2i�

− ie−2i� 0

, Sz =

1

2
	1 0

0 − 1

 ,

Sr =
1

2
	 0 e2i�

e−2i� 0

 �8�

project to the cylinder axis �Sz�, as well as to the tangential
�S�� and normal �Sr� directions. The above-mentioned shift
of wave vectors leads to the new components k�= �m+m�
+1� /2R and ��= �m−m�� /R.

Starting from the Hamiltonian in Eq. �1�, which applies
both to the planar and cylindrical 2DEGs, the spin-charge
coupled kinetic equations are derived by applying the same
calculational steps as in our previous work.28 As there is no
need to repeat this derivation, we write down the final result

�

�t
f�k,��t� −

i�

m�
k · �f −

i

�
���� · f +

e

�
E · �kf =

1

�
� f̄ − f� ,

�9�

�

�t
f�k,��t� −

i�

m�
�k · ��f −

2

�
��k� � f −

i

�
����f +

e

�
�E · �k�f

=
1

�
�f − f� +

��k�
�

�

���k�
f̄ −

1

�

�

���k�
��k�f , �10�

where the spin-orbit coupling vector ���� has to be rede-
fined for the cylinder geometry according to

���� = − „�y���sin�2��,�y���cos�2��,− �z���… .

�11�

On the right-hand side of Eq. �10� there appear spin-
dependent contributions to the collision integral, which guar-
antee that the spin model correctly approaches the state of
thermodynamic equilibrium. The quantum-kinetic equations
�9� and �10� for the elements of the spin-density matrix de-
scribe a number of interesting field-dependent spin effects in
a 2DEG with SOI. We mention the study of the spin-Hall
effect and the related proper definition of the spin current28,33

as well as the identification of spin-coherent waves in the
ballistic regime.34,35 In addition, the basic equations �9� and
�10� allow the treatment of the charge-Hall effect21 and the
anomalous Hall effect.36 Related results valid for a 2DEG on
a cylindrical surface are easily obtained from Eqs. �9� and
�10�.

Another class of field-mediated spin effects in semicon-
ductors is covered by spin-charge coupled drift-diffusion
equations that are derived from Eqs. �9� and �10� in a
straightforward manner under the condition of weak SOI.
Within this framework, we studied the electric-field-driven
Hanle effect, spin remagnetization waves, and the influence
of an electric field on the persistent spin helix.37,38 Here, we
extend this approach by a strict identification of field-
dependent spin modes from the analytical solution of spin-
charge coupled drift-diffusion equations and by treating an
excitation mechanism based on the optical grating technique.
Specific results are obtained for the planar and the cylindrical
geometries.

To establish the quasiclassical drift-diffusion picture, the
coupled quantum kinetic equations are studied in the long-
wavelength and low-frequency regime. Results are easily ob-
tained for weak SOI when a physically relevant evolution
period exists, in which the carrier energy is already thermal-
ized, although both the charge and spin densities still remain
inhomogeneous. We shall focus on this regime, where the
following ansatz for the spin-density matrix is justified:37

f̄�k,��t� = − F��,t�
dn��k�/d�k

dn/d�F
, �12�

f�k,��t� = − F��,t�
dn��k�/d�k

dn/d�F
. �13�

The bar over the quantities f and f indicates an integration
with respect to the polar angle of the vector k. In Eqs. �12�
and �13�, n��k� denotes the Fermi function and n
=�d� ���n��� is the carrier density with ��� being the den-
sity of states of the 2DEG. By applying the outlined schema,
spin-charge coupled drift-diffusion equations are straightfor-
wardly derived for the macroscopic carrier density F�� , t�
and magnetization M�� , t�=�BF�� , t� �with �B=e� /2m�c
being the Bohr magneton�. We obtain the coupled set of
drift-diffusion equations,

� �

�t
− i�E · � + D�2�F +

i

��B
����� − �̃���� · M = 0,

�14�

� �

�t
− i�E · � + D�2 + �̂�M −

e

m�c
M � Heff − ���̂Heff�

F

n

−
i�

2�c
�̃���F = G , �15�

in which the matrix of spin-scattering times �̂, an axial vec-

tor �̃, and an effective magnetic field Heff appear. �=�B
2n�

denotes the Pauli susceptibility and n� is an abbreviation for
dn /d�F. In addition, the spin generation by an external
source is accounted for by the vector G on the right-hand
side of Eq. �15�. D and � denote the diffusion coefficient and
the mobility, which satisfy the Einstein relation �=eDn� /n.

The general structure of Eqs. �14� and �15� applies both to
the planar and cylindrical geometries. The specification of
the model proceeds by defining the quantities entering these
equations.

Let us first specify our model of a planar 2DEG, for
which we consider the general class of linear SOI expressed
by ��k�= �̂k, with �̂ being the 2�2 matrix of spin-orbit
coupling constants. For the combined Rashba-Dresselhaus
model �11=−�22=	 , �12=−�21=�, we use the representa-
tion

� =
�2K

m
cos�� + �/4�, 	 =

�2K

m
sin�� + �/4� , �16�
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which reduces to the pure Rashba and the pure Dresselhaus
SOI for �=−� /4 and �=� /4, respectively. The spin-
scattering matrix has the form

�̂ =
1

�s�
1 cos�2�� 0

cos�2�� 1 0

0 0 2
� , �17�

where the spin-scattering time �s is given by 1 /�s=4DK2.
The electric field enters the drift-diffusion equations �14� and
�15� via the vector

�̃��� =
2m��

�2 ��̂��� � �E� , �18�

and the effective magnetic field

Heff = −
2m�2c

e�2 �̂��E + 2iD�� , �19�

which originates from the SOI.
For a 2DEG on a cylindrical surface, we treat the Rashba-

Dresselhaus model, for which the symmetric matrix �̂ of
spin-scattering times has the form

�̂ =
4Dm�2

�4 �a11
2 + a12

2 + a31
2 + a32

2 − �a22a32 + a21a31� − �a11a21 + a22a12�
− �a22a32 + a21a31� a11

2 + a12
2 + a21

2 + a22
2 − �a12a32 + a11a31�

− �a11a21 + a22a12� − �a12a32 + a11a31� a21
2 + a22

2 + a31
2 + a32

2 � , �20�

where the quantities aij are expressed by the spin-orbit cou-
pling constants

a11 = 	 sin�2��, a21 = 	 cos�2�� ,

a12 = − � sin�2��, a22 = − � cos�2�� , �21�

a31 = − 	� −
�2

2m�R

, a32 = 	 . �22�

The electric field is accounted for by the vector

�̃��� =
2m��

�2 ����� � �� �23�

with

� = �a21�E� + a22�Ez,a31�E� + a32�Ez,a11�E� + a12�Ez� ,

�24�

and by the effective magnetic field given by

Heff = −
2m�2c

e�2 �� + 2iD����� , �25�

on which the strong electric-field analogy of the Hanle effect
is founded.39

An exact analytical solution of the spin-charge coupled
drift-diffusion equation �15� for the field-induced magnetiza-

tion is straightforwardly obtained for �̃���=0. By applying
a Laplace transformation with respect to the time variable t,
we obtain the analytical solution

M�� =
� + �̂

DT
�Q� −

e

m�c�
QzHeff�

−
1

�DT
	 e

m�c

2

�Heff � �Heff � Q��� , �26�

Mz =
Qz

�
+

e

m�c�

1

DT
Heff�� + �̂�Q�

− 	 e

m�c�

2 1

DT
Heff�� + �̂�HeffQz, �27�

where M�=M−�Heff and M�� =ez�M�. The inhomogeneity
of the transformed equation �15� for the spin-density matrix
is denoted by Q and has the form

Q = M�t = 0� + �i�E� − D�2��Heff/s + G/s . �28�

Other quantities that appear in Eqs. �26� and �27� are defined
by �=s− i�E�+D�2 and �=�+g1 with s being the Laplace
variable. The general solution in Eqs. �26� and �27� provides
the basis for the study of numerous spin-related phenomena
including effects of oscillating electric fields. Most important
is the identification of spin excitations by treating the de-
nominator DT, which is given by the determinant

DT =
1

�
����2 + �eHeff/m�c�2� + g2�� +

��E�2

D
�� ,

�29�

where g1 and g denote specific spin-orbit coupling constants.
The cubic equation DT=0 with respect to the Laplace vari-
able s→−i� yields three spin-related eigenmodes that have
already been studied for zero electric field E=0 and the pla-
nar geometry in Ref. 40. Field-dependent eigenstates calcu-
lated from the zeros of Eq. �29� are characterized both by the
direction of the electric field and by the spin injection/
diffusion direction. Most solutions of this equation describe
damped resonances in the charge transport and spin polariza-
tion. However, as already mentioned, there also exist un-
damped excitations, which have received particular interest
in recent studies. Here, we focus on these long-lived spin
oscillations and study their dependence on an electric field.
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III. PLANAR 2DEG

The general spin-charge coupled drift-diffusion equations,
which were derived in Sec. II, are applicable both to planar
and cylindrical semiconductor heterostructures with SOI.
These equations cover numerous spin-related phenomena,
which were partly studied previously.37,38 In this section, we
derive additional conclusions for a planar 2DEG and focus
on an optical excitation mechanism, which allows an identi-
fication of spin-related eigenmodes. The spirit of this study
heavily rests on the rich physics of space-charge waves.13

The main part of this paper is devoted to an illustrative ex-
ample of this kind of research. Results are presented in Sec.
III C.

A. Amplification of an electric field by spin injection

As a first application of our general approach, the charge-
current density is studied on the basis of its definition

j�t� = − ie��F��,t���=0. �30�

Taking into account Eq. �14� and the solution in Eqs. �26�
and �27�, the components of the conductivity tensor are
straightforwardly calculated. Here, we are interested in com-
bining the ac electric field with an external permanent spin-
injection source that provides a generation rate Gz�s� for the
out-of-plane spin polarization.

Focusing on the linear-response regime with respect to the
in-plane electric field, an analytical expression for the con-
ductivity tensor �̂ is obtained. In accordance with the appli-
cability of the drift-diffusion approach, the derivation is re-
stricted to the case when the inequality �n� /�n�1 is
satisfied. For the frequency-dependent �s→−i�� longitudinal
and Hall conductivities, we obtain

�xx

yy
�s�/�0 = 1 �

Gz�s

n

�
�n�

4�n

sin�4��
�s�s + 1��s�s + 2 cos2 ���s�s + 2 sin2 ��

,

�31�

�xy

yx
�s�/�0 = �

Gz�s

n

�n�

2�n

sin�2��
s�s + 2

�� �

�s
−

s�s + 1

�s�s + 2 cos2 ���s�s + 2 sin2 ���
�32�

with �0=e�n. Other contributions to the charge transport,
which are solely due to SOI, are much weaker than the re-
tained terms originating from spin injection. This conclusion
is illustrated by the curves �a� in Fig. 1, which have been
numerically calculated for the case Gz=0. Weak SOI leads
only to a slight deviation of the longitudinal conductivities
�xx and �yy from �0. The spin effect completely disappears
for the special Rashba-Dresselhaus model with �=	 ��=0�.
The situation drastically changes, when there is an appre-
ciable permanent spin injection, which leads to additional

contributions to the steady-state charge transport owing to
the spin-galvanic effect. An example is shown by the curves
�b� in Fig. 1. The striking observation is that Re �yy becomes
negative for frequencies below about 1010 Hz. This remark-
able behavior is confirmed by the expression for the static
conductivity

�xx

yy
�s�/�0 = 1 �

Gz�s

n

�n�

4�n
cot�2�� , �33�

from which it is concluded that �yy changes its sign for suf-
ficiently strong spin injection. Therefore, we meet the par-
ticular situation that a paramagnetic medium, which usually
absorbs energy from an ac electric field to produce a spin
accumulation, is driven to another regime, where the ac field,
which propagates in a given direction, is amplified by spin
injection. This stimulated emission is similar to the micro-
wave energy gain, which was recently predicted to occur in a
paramagnetic medium with sufficiently large injection spin
currents.41 Based on these findings derived for rotating mag-
netic fields, the authors proposed a concept for a spin-
injection maser. Our result is very similar to this interesting
proposal.

B. Electric-field-mediated spin excitations

As a second application of our general approach, we treat
coupled spin-charge eigenstates that exist in a biased sample.
Effects of this kind depend not only on the directions of the
electric field and the spin injection but also on the orientation
of the crystallographic axes. Here, we study the influence of
an electric field on an optically generated standing spin lat-
tice that is periodic along the �+= ��x+�y� /�2 direction. For
simplicity, it is assumed that the spin generation provides a
regular lattice for the out-of-plane spin polarization

Qz��� =
Qz0

2
����+ − �0� + ���+ + �0�� . �34�

Inserting this source term into Eq. �27�, we obtain for the
related field-dependent magnetization the solution

10
7
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9
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−0.5

0

0.5

1

1.5

2

2.5
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C
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d
u
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Re σxx/σ0

Re σyy/σ0
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FIG. 1. Real part of the diagonal conductivity components �xx

�dashed lines� and �yy �solid lines� as a function of frequency � for
	 /�=0.5, �=10−9 eV cm, �=10−13 s, and D=24 cm2 /s. The sets
of dashed and solid lines �a� and �b� are calculated with Gz0 /n=0
and 0.03, respectively.
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Mz��,s� =
�� + g2

���2 + �eHeff/m�c�2� + g2�� + ��E�2/D�
Qz��� .

�35�

The character of which is mainly determined by the poles
calculated from the zeros of the denominator. The coupling
constant g is given by 4Dm�2��̂� /�4 and g1=2 /�s. Pro-
nounced oscillations arise for the special Rashba-Dresselhaus
model with �=	. In this case �g=0�, Eq. �35� is easily trans-
formed to spatial and time variables with the result

Mz�r+,t� =
Qz0

2
�e−D��0 + 2�2K�2t cos��0r+ + �E+��0 + 2�2K�t�

+ e−D��0 − 2�2K�2t cos��0r+ + �E+��0 − 2�2K�t�� ,

�36�

where K=�2m�� /�2 and r+= �rx+ry� /�2. In general, this so-
lution describes damped oscillations of the magnetization.
However, due to a spin-rotation symmetry, there appears an
undamped soft mode when the wave-vector component �0 of
the imprinted spin lattice matches the quantity 2�2K, which
is a measure of the SOI. This eigenmode leads to long-lived
oscillations of the magnetization. Numerical results, calcu-
lated from Eq. �35�, are shown in Fig. 2. Under the ideal
condition �=	 and �0=2�2K, the induced magnetization
rapidly reaches the value Mz=Qz0 /2 �curve a� and remains
constant afterward. However, any slight detuning of this spe-
cial set of parameters sparks weakly damped oscillations that
can last for many nanoseconds. Examples are shown by the
curves b and c in Fig. 2. The importance of such spin-
coherent waves, especially their potential for future spin-
tronic applications, has recently been emphasized by
Pershin.42 The long-lived spin waves that have been exam-
ined in this section are solely generated by an in-plane elec-
tric field. We see in them building blocks for future spin-
tronic device applications that rely exclusively on electronic
means for generating and manipulating spin.

C. Excitation of spin waves

Another wide research area that is covered by the spin-
charge coupled drift-diffusion equations �14� and �15� �or
their solution in Eqs. �26� and �27�� refers to the response of
the spin subsystem to space-charge waves in semiconductor
nanostructures. To provide an example for this kind of stud-
ies, we focus in this section on spin waves that are excited by
an optically induced moving charge-density grating. Two la-
ser beams with a slight frequency shift between them pro-
duce a moving interference pattern on the surface of the
semiconductor sample that leads to a periodic generation rate
for electron and holes of the form

g�x,t� = g0 + gm cos�Kgx − �t� �37�

with a homogeneous part g0 and a modulation gm. Kg and �
denote the wave vector and frequency of the grating. The
generation rate g�x , t� causes electron �F�x , t�� and hole
�P�x , t�� density fluctuations that have the same spatial and
temporal periodicity as the source g�x , t�. The dynamics of
photogenerated electrons and holes is described by continu-
ity equations, which encompass both carrier generation
�g�x , t�� and recombination �r�x , t�� as well as drift and dif-
fusion �see, for example, Ref. 43�. If the retroaction of spin
on the carrier ensemble is neglected, we obtain the set of
equations

�F

�t
=

1

e

�Jn

�x
+ g�x,t� − r�x,t� , �38�

�P

�t
= −

1

e

�Jp

�x
+ g�x,t� − r�x,t� , �39�

where the current densities for electrons �Jn�x , t�� and holes
�Jp�x , t�� are calculated from drift and diffusion contributions

Jn = e�nExF + eDn
�F

�x
, �40�

Jp = e�pExP − eDp
�P

�x
. �41�

In these equations, �n and �p �Dn and Dp� denote the mo-
bilities �diffusion coefficients� for electrons and holes, re-
spectively. A constant electric field E0 applied along the x
direction is complemented by a space-charge field �E�x , t�,
which is calculated from unbalanced electron and hole den-
sities via the Poisson equation

�Ex

�x
=

4�e

�
�P − F� �42�

with � being the dielectric constant. The optical grating leads
to a weak modulation of the carrier densities around their
mean value �F=F0+�F and P= P0+�P�. Due to the spin-
charge coupling manifest in Eqs. �14� and �15�, charge-
density waves are transferred to the spin degrees of freedom
and vice versa. As the hole spin relaxation is rapid, the time
evolution of the generated spin pattern can be interpreted in
terms of the motion of electrons alone. Consequently, the
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FIG. 2. Time dependence of the electric-field induced out-of-
plane magnetization for E+=500 V /cm, D=24 cm2 /s, and �
=10−13 s. The lines a, b, and c were calculated for �+ /�2K=2 and
�=	=10−9 eV cm; �+ /�2K=2.01 and �=	=10−9 eV cm; and
�+ /�2K=2.02, �=1.05, and 	=0.95 10−9 eV cm, respectively. In
addition, we set r+=0.
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hole density is not considered in the equations for the mag-
netization.

In the absence of the optical grating, there is no out-of-
plane spin polarization �Fz

0=0�. For the in-plane components,
a short calculation leads to the result

Fx
0 = −

1

2
�K11�nE0n�, �43�

Fy
0 = −

1

2
�K21�nE0n�, �44�

which expresses the well-known effect of the electric-field
mediated in-plane spin accumulation.44,45 In these equations,
the spin-orbit coupling constants are denoted by Kij
=2m�ij /�2. Besides this homogeneous spin polarization,
there is a field-induced contribution, which is due to the op-
tical grating. For the respective spin modulation, the har-
monic dependence of the carrier generation in Eq. �37� via
z=Kgx−�t remains intact. In view of the periodic boundary
condition that we naturally exploit for the optically induced
grating, it is expedient to perform a discrete Fourier transfor-
mation with respect to the z variable according to the pre-
scription F�z�=�p exp�ipz�F�p�. The resulting equations for
the Fourier coefficients of the magnetization are easily
solved by perturbation theory with respect to the optically
induced electric field Y =�E /E0 and spin �F contributions.
For the field-dependent homogeneous spin components �p
=0�, we obtain the solution

�Fx�0� =
2K12n

g�seE0n�
�Fz�0� , �45�

�Fy�0� =
2K22n

g�seE0n�
�Fz�0� , �46�

�Fz�0� = −
��nE0�2/Dn

2/�s + ��nE0�2/Dn
�S�1�Y�− 1� + S�− 1�Y�1�� ,

�47�

in which the p=1 spin fluctuation occurs via the quantity

S�1� = �Fz�1� +
�s

2�E

K11

Kg
�Fy�1� −

�s

2�E

K21

Kg
�Fx�1� . �48�

The scattering time �E, which is provided by the constant
electric field, is given by 1 /�E=�nE0Kg. The spin response
described by Eqs. �45�–�48� is a consequence of electric-field
fluctuations that accompany the optically induced charge
modulation. As we neglect the retroaction of the induced
spin fluctuation on the charge balance, the determination of
Y�p=1� rests exclusively on Eqs. �37�–�42�. The calculation
has been performed in our previous work.43 To keep our
presentation self-contained, we present the respective results
that are needed for the calculation of the spin polarization.
The relative electric-field modulation, which has the form

Y�1� = −
gm

2g0

1 + i�−

��M�� − �1��� − �2�
, �49�

exhibits characteristic resonances at eigenmodes of space-
charge waves given by

�1,2 = −
1

2
��−E0Kg + i��

���1

2
��−E0Kg + i���2

+ �1 + �1�/��M . �50�

The damping of this mode

� = D+Kg
2 +

1

�M
+

1

�
�51�

includes the Maxwellian relaxation time �M =� /4��d with
�d=eg0��+ and ��=�n��p. The parameter �1 in Eq. �50�
depends on the electric field and is calculated from

�1 = d+��+ − ��−� + �d+�1 − �2 + �+
2 − �−

2� + ��+,

�52�

where d�=��E0Kg� /2, ��=D�Kg /�+E0, �= �� /4�e�
�E0Kg /2g0�, and �=�− /�+. The resonant amplification of
dc and ac current components due to space-charge waves
provides information useful for the determination of the life-
time and the mobilities of photogenerated electrons and
holes in semiconductors.43

To continue the analysis of the spin response, the set of
linear equations for the p=1 Fourier coefficients of the spin
vector must be solved. The analytical solution has the form

S�1� =
��sn�

4�E
2Kg

2

g�E

D̃T
�1 +

1 + 2i�

1 + �̃�s/2�E
��K11K12 + K21K22�

� ��̃�1 + 2i��
�F�1�

n
+ ��̃ − i�Y�1�� , �53�

where �̃=�− i�1+��E� and �=DnKg /�nE0. Again, the de-

nominator D̃T in Eq. �53� is used for the identification of
electric-field-induced eigenmodes of the spin system. For the
specific setup treated in this section, the general expression
given in Eq. �29� reduces to the dimensionless form

D̃T =
1

�̃ + 2�E/�s

��̃���̃ + 2�E/�s�2 +
K11

2 + K21
2

Kg
2 �1 + 2i��2�

+ �g�E�2��̃ +
2�E

�s
+

�1 + 2i��2

�
�� . �54�

The closed solution in Eqs. �45�–�54� for the homogeneous
spin polarization, which is due to a moving optical grating,
has a resonant character when eigenmodes of the spin sub-
system are excited. The dispersion relations of these modes

are obtained from the cubic equation D̃T=0 with respect to
�. Depending on the relative strength of the imaginary part
in the equation �=����, a more or less pronounced reso-
nance occurs in the induced spin polarization. Due to the
spin-rotation symmetry of the model, the special Rashba-
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Dresselhaus system with �=	 provides an attractive ex-
ample. By rotating the spin-injection direction, the situation
becomes even more interesting. A rotation around � /4 leads
to the set of SOI parameters �11=�12=�22=0 and �21
=−2�. In this special case �g=0�, we obtain for the p=1
Fourier component of the in-plane spin polarization the re-
sult

�Fy�1� =
i�n�

2�E

K21

Kg

��1 + �K21/Kg�2� − i�1 + ��E�
�E

2�� + �s1��� + �s2�
Y�1� ,

�55�

in which two field-induced spin eigenmodes appear. The dis-
persion relations of which are expressed by

�s1,2 = �nE0�Kg � K21� + iDn�Kg � K21�2. �56�

Again the damping of one mode completely disappears
under the condition Kg=−K21=4m�� /�2. This peculiarity
gives rise to a pronounced resonance in the field dependence
of the spin dynamics at �nE0 max=� / �Kg+K21�. Figure 3 il-
lustrates this effect. Calculated is the in-plane spin modula-
tion �Fy�Kgx−�t�=2 Re �Fy�1�exp�iz�. The smooth dashed
line displays the response of the spin polarization to the op-
tically generated moving charge-density pattern for E0
=1 kV /cm. The unpretentious signal is considerably en-
hanced under the resonance condition when E0=E0 max
=2.67 kV /cm �curve a in Fig. 3�. By changing the field
strength a little bit �E0=E0 max+100 V /cm �curve b� and
E0=E0 max−100 V /cm �curve c��, the phase, amplitude, and
frequency of the spin wave drastically change. This resonant
influence of an electric field on the excited spin waves is a
pronounced effect that is expected to show up in experi-
ments. By applying a magnetic field, the resonant in-plane
spin polarization is rotated to generate an out-of plane mag-
netization.

IV. CYLINDRICAL 2DEG

The general approach developed in this paper for the
treatment of field-mediated spin effects in a planar 2DEG

can be transferred to the study of spin phenomena on curved
surfaces. As an example, let us consider field-dependent
long-lived spin modes on a cylinder. According to Eq. �29�,
the dispersion relation of spin waves are calculated from the
equation

���2 + �H
2 � + g2	� +

��E�2

D

 = 0, �57�

in which the shorthand notations �H= �e /m�c�Heff and �
=�+g1 are used. The coupling constants g1 and g2 are given
by

g1 = 2
4Dm�2

�4 ��2 + 	2 −
�2

2m�R
	� −

�2

4m�R

� , �58�

g2 = 	4Dm�2

�4 
2�	2 − �	� −
�2

2m�R

�2

. �59�

The cubic equation �57� with respect to the Laplace variable
s has three solutions, which give the dispersion relations of
spin excitations. Most eigenmodes have a finite lifetime.
However, there is one long-lived spin excitation, whose
damping completely disappears for a given wave number �z.
This mode appears for a model without any Dresselhaus SOI
�	=0� when the Rashba coupling constant � matches the
quantity �2 /2m�R. In this case, we obtain �s→ i��

�1,2 = − �Ez��z � K� − iD��z � K�2 �60�

with K=2m�� /�2 being a wave number that is built from the
Rashba spin-orbit coupling constant �. This soft mode be-
comes increasingly undamped in the limit �z→K. The per-
sistent spin mode of this kind, which is a consequence of a
new spin-rotation symmetry, has no counterpart in the planar
Rashba model and is a distinct feature that solely appears on
a cylinder surface.

In order to excite the persistent spin wave, a regular lat-
tice of spin polarization Qr perpendicular to the cylinder sur-
face is provided by laser pulses. For simplicity, the spin gen-
eration is assumed to have the form

Qr =
Qr0

2
����z − �0� + ���z + �0�� . �61�

Under the condition Q�=Qz=0, the solution of Eq. �15� is
expressed by

Mz =
�EzK

�2 + �H
2 Qr, Mr =

�

�2 + �H
2 Qr. �62�

In the derivation of these equations, it was considered that
the inverse Fourier transformation with respect to �� leads to
�=0. The inverse Laplace transformation and the integration
over kz give for the nonvanishing components of the field-
mediated magnetization the final results

Mr�z,t� =
Qr0

2
�e−D��0 + K�2t cos��0z + �Ez��0 + K�t�

+ e−D��0 − K�2t cos��0z + �Ez��0 − K�t�� , �63�
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FIG. 3. Induced in-plane spin polarization as a function of z
=Kgx−�t for �=	=0.2�10−9 eV cm, g0=gm=1019 cm−3 s−1,
�n=0.5 cm2 /V s, �p=0.2 cm2 /V s, T=77 K, and a recombina-
tion time �r=10−6 s. The curves a, b, and c are calculated with
E0 max=2.67 kV /cm, E0 max+100 V /cm, and E0 max−100 V /cm,
respectively. For the dashed line, we used E0=1 kV /cm.
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Mz�z,t� = Mz
�−��z,t� − Mz

�+��z,t� �64�

with

Mz
��z,t� =

�Ez

��Ez�2 + �2D�0�2

Qr0

2

��2D�0 cos��0z + �Ez��0 � K�t�

− �Ez sin��0z + �Ez��0 � K�t��e−D��0 � K�2t.

�65�

Both components Mz and Mr consist of a strongly and
weakly damped oscillating term. Under the resonance condi-
tion �0=K, the first mode quickly disappears, whereas the
second mode becomes completely undamped. There is a
smooth dependence on the electric field Ez in the magnetiza-
tion Mz along the cylinder axis. A slight detuning of the
resonance, however, leads to the appearance of an electric-
field-driven spin wave. The damping of which is extremely
weak. The frequency of this long-lived spin excitation is di-
rectly controlled by the applied electric field. The situation is
similar to the persistent spin helix of a planar 2DEG, so that
the proposal of a nonballistic spin transistor7 supports our
expectation that the robust spin wave on a cylinder and its
direct manipulation by an electric field has the potential to be
utilized in future spintronic device applications.

V. SUMMARY

The generation and manipulation of a spin polarization in
nonmagnetic semiconductors by an electric field is a subject
that has recently received considerable attention. All infor-
mation needed for the description of these field-induced spin
effects is given by the spin-density matrix, the equation of
motion of which is governed by the model Hamiltonian. The
SOI is the main ingredient in this approach. In spite of the
fact that kinetic equations for the four-component spin-
density matrix are straightforwardly derived, at least two
caution notices are in order: �i� for the consistent treatment of
scattering, its dependence on SOI must be considered and �ii�
to reproduce the well-known field-induced spin accumula-
tion, third-order spin corrections have to be retained in the
kinetic equations. In order to study macroscopic spin effects,
it is expedient to suppress still existing superfluous informa-
tion in the spin-density matrix by deriving spin-charge
coupled drift-diffusion equations. Under the condition of
weak SOI, we followed this program and derived basic equa-
tions in an exact manner. These equations, which are valid
for the general class of linear SOI, apply to various electric-
field-induced spin effects that depend not only on the orien-
tation of the crystallographic axes but also on the spin-
injection direction and the alignment of the electric field. An
exact solution of the basic equations for the magnetization

allows the identification of field-dependent spin excitations.
Among these spin eigenmodes there are long-lived spin
waves that can be excited by a spin and/or charge grating
providing the necessary wave vector. The applicability of our
general approach was illustrated by a few examples. The
treatment of the spin-mediated conductivity of charge carri-
ers reveals the possibility that a component of an ac electric
field is amplified by spin injection. A similar effect led to the
recent proposal for a spin-injection maser device.41 In a sec-
ond application, it was demonstrated how a regular lattice of
an out-of-plane spin polarization excites long-lived field-
dependent spin waves in a planar 2DEG. The calculation
refers to a �001� semiconductor quantum well with balanced
Rashba and Dresselhaus SOIs, for which a persistent spin
helix has been identified.6 In the main part of the paper, the
rich physics of space-charge waves was utilized for the study
of spin excitations. By considering a typical setup for the
optical generation of a moving charge pattern, the associated
dynamics of the related spin degrees of freedom was treated.
It was shown that the charge modulation can be used to
excite intrinsic field-dependent spin waves. This example
demonstrates that the powerful methods developed in the
field of space-charge waves can be used for the study of spin
excitations.

Finally, we applied our approach to the treatment of spin
dynamics on a curved surface, where new long-lived spin
excitations exist even in the nonballistic regime. From the
solution of rigorous coupled spin-charge drift-diffusion equa-
tions for a cylindrical surface, the dispersion relations of
field-dependent spin eigenmodes were identified. In general,
there are three damped spin excitations on a cylinder. The
character of which is determined by the coupling constants �
and 	 of the Rashba and Dresselhaus SOIs. For the pure
Rashba model �	=0�, a long-lived spin wave exists when the
radius R of the cylinder matches the condition R=�2 /2m��.
This finding is of particular interest as an applied electric
field stimulates a nearly undamped spin wave. This peculiar-
ity of the Rashba model on a cylindrical surface has no coun-
terpart in a planar 2DEG. Unfortunately, the experimental
demonstration of this effect is rendered more difficult be-
cause the huge internal strain within the rolled-up tube
breaks the bulk inversion symmetry, so that an appreciable
Dresselhaus contribution to the SOI is expected, which de-
tunes the strong spin resonance. If this problem can be cir-
cumvented, the long-lived field-mediated spin excitations on
a cylinder have the potential to be utilized in spintronic de-
vices that work even in the nonballistic regime.
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